
Introduction to the
Programming Interface
Command Translator on
Oscilloscopes
 TECHNICAL BRIEF

2 | TEK.COM

TECHNICAL BRIEFIntroduction to the Programming Interface Command Translator on Oscilloscopes

In firmware versions v1.30 and higher, supported Tektronix

oscilloscopes1 come equipped with a programming, or

programmatic, interface (PI) translator to help migrate

legacy automation systems to new oscilloscope platforms.

This unique, new capability allows new scopes to receive

older, unsupported commands and translates them into

modern commands. Translations for many commands

for MSO/DPO5000, DPO7000, and MSO/DPO70000

oscilloscopes are already included in the default dictionary,

but some automation applications will require custom

translations. This document will explain the functions of the

PI Translator, show how to add custom translations, and

provide examples.

The PI Translator
The PI Translator is a simple system. It acts as a “dictionary”

that contains a list of legacy commands and their modern

counterparts. In addition to direct translation, entries can be

configured to alias to multiple modern commands, add or

preserve command arguments, and skip commands that are

no longer needed.

The PI Translator runs passively in the scope application

and does not require any installation in the remote client.

It intercepts commands as they are being received by the

scope, compares them to a set of supported translations, and

sends the translated command on to the scope firmware.

Automation Application
(Existing Legacy Code)

Host

Tektronix
Oscilloscope

Driver IVI, LabVIEW, or .NET Driver

USB or LAN

VISA

Translator

Command Processor

Figure 1: The translator is built into the Tektronix oscilloscope and can convert “legacy” commands from the host to
any standard commands.

http://tek.com

TEK.COM | 3

TECHNICAL BRIEFIntroduction to the Programming Interface Command Translator on Oscilloscopes

By default, the PI Translator supports a large set of standard

commands. It is intended to provide compatibility for common

operations, like configuring horizontal, vertical, trigger, and

acquisition settings, starting and stopping capture, and

waveform transfer. This will cover many applications, but

some automation sequences will require additional, custom

commands to be added to the PI Translator.

The list of translations is contained in an XML file called

the Compatibility File. This file must be edited to add new

functionality to the PI Translator. XML files are simple,

formatted text files. They can be edited in any text editor,

such as Notepad or Microsoft Visual Studio. We prefer and

recommend Notepad++ (https://notepad-plus-plus.org/), a

free, open-source text editor that adds some functionality to

make developing code easier.

Enabling the PI Translator
There are two ways to enable the PI Translator:

•	 Activate it in the oscilloscope’s user interface by
clicking/tapping the Utility menu at the top of the scope
application, then selecting User Preferences->Other
and flipping the “Programmatic Interface Backward
Compatibility” button to On.

•	 Activate it with a PI command by sending
COMPatibility:ENABLE 1.

Once the PI Translator is enabled, it will translate commands

according to a specified Compatibility File. The default file

location when the oscilloscope is running the standard

embedded Linux OS is:

C:/PICompatibility

The default location when the oscilloscope is running

Windows is:

C:\Users\Public\Tektronix\TekScope\PICompatibility\

Compatibility.xml

To modify the Compatibility File, we recommend that you copy

Compatibility.xml and give it a new name. Then, to apply the

changes to the PI Translator, choose your new Compatibility

File using the file browser in the User Preferences menu

by pressing the Load button, as seen in Figure 2. You can

quickly switch between any loaded Compatibility Files and the

default using the drop-down menu.

Anatomy of a PI Command
In order to effectively customize the Translator, it is important

to understand how commands are constructed. All PI

commands conform to a standard SCPI format. This means

that they are composed of ASCII (text) strings followed by a

termination character, 0x0A or ‘\n’.

Commands are typically constructed of a header, which tells

the instrument what operation should be executed, and an

argument, indicating which value or option should be applied

to the operation.

Alternatively, some commands have a query form, indicated

by a question mark (?) at the end of the header. This requests

a response from the instrument, usually the current value

of the setting. This response can then be read by the client

program. Queries do not have arguments.

Figure 2: Enabling the PI Translator in the scope UI

http://tek.com

4 | TEK.COM

TECHNICAL BRIEFIntroduction to the Programming Interface Command Translator on Oscilloscopes

Figure 3: PI Command Structure

Buffer – The entire contents sent from the first character

(leading colon or otherwise) to the newline character.

Message – Contents of a PI buffer from the first character

(leading colon or otherwise) to either a semicolon (to denote a

second message in a concatenated command) or a newline.

Header – Contents of a PI message that defines the action,

specifically the string from the first character of a buffer to the

first space, or the last character before a question mark.

Keyword – If a header is split by colons, a keyword would be

a single element of the split list.

Suffix – Usually the trailing integer of a keyword (such as the

1 in math:math1:define) or a single character set apart by

colons (as in trigger:a:type) Specifically, the suffix defines

which instance of a particular type is used.

Argument – Arguments define what action or value a PI

command should take. The format of this argument will

vary from command to command and is defined in the

Programmer Manual.

Command – When sending a message through the PI, a

command indicates that something in the scope should

change. Usually, but not always, this is a header followed by

an argument.

Query – When sending a message through the PI, a query

indicates that the scope must respond to a request. Always a

header followed immediately with a question mark (?).

Translation Format
A PI Translator entry is composed of two parts: the keyword(s)

from the original legacy command and the translation

composed of supported commands. The legacy command

should be split along each colon into keywords. For instance,

CURSor:WAVEform:POSITION2 would be split into CURSor,

WAVEform, and POSITION2 entries. Each keyword should

have its own line in the compatibility file. Commands that

share keywords can be grouped together, meaning that all

CURSor commands can be listed under the same tree.

Each consecutive keyword in a command should be listed

on a new line, with two spaces of indentation. Each line

contains the name of the keyword and any number of optional

attributes. Attributes are modifiers that indicate a keyword

has special properties (for example, it could be a query or

require an argument). Attributes are covered in detail in the

next section, or you can skip to the Translation Examples

section to see how to use them. The most important attribute

is “leaf”, which tells the Translator that this keyword is the

end of a command. Every keyword with the “leaf” attribute

should be followed by a translation containing a command

found in the 2 Series MSO or the 4/5/6 Series MSO/LPD

Programmer Manuals.

The translation should be listed, again, on a new line, with two

spaces of indentation. This includes the header, which lists

the supported command in full, and any number of optional

attributes. These attributes are covered in detail in the

next section.

http://tek.com

TEK.COM | 5

TECHNICAL BRIEFIntroduction to the Programming Interface Command Translator on Oscilloscopes

Here is a simple, single-replacement entry:

 <keyword name="HARDCOPY" leaf="1" command="1">

 <keyword name='FILENAME' leaf="1" command="1" query="1">

 <translation header=':SAVe:IMAGe:FULLPath'/>

 </keyword>

 </keyword>

Considerations
To add a new translation, you should ask the following

questions to help design the entry:

•	 What are all actions taken by the legacy command?

•	 What are the short and long forms of the legacy
keywords?

•	 Is there a query form? A command form?

•	 What is the new header or headers?

•	 Does the argument of the legacy command matter?

•	 Does the suffix change what new header is used?

•	 Does the new header have suffixes that the previous
header does not?

•	 Does the new header accept the same argument format
as the legacy header?

Keyword Attributes
name

This is the only required portion of the entry. It should

be entered in UPPERlower format, where the uppercase

characters represent the valid short form of the keyword. (For

example, SPECTral states that the scope will accept SPECT

as a valid short form of the command ‘spectral’)

leaf

This attribute indicates that the entry is a valid stopping point

for the Translator. For example, to translate “MATH?:DEFine”,

the “DEFine” node would have a “1” in the leaf attribute. If

omitted, it is assumed that leaf equals zero and that more

keywords will follow below. Note, a keyword can have the leaf

attribute and still have following entries, but it must also have

at least one translation entry.

command

This attribute defines if there is a valid command form for this

PI header. Some PI headers are query only and this prevents

the module from incorrectly handling the message. If omitted,

it is assumed that command equals zero and no command

handling will be performed on this header.

query

This attribute defines if there is a valid query form for this PI

header. Some PI headers are command-only, and the scope

cannot provide a response. If omitted, it is assumed that

query equals zero and no query handling will be performed on

this header.

argument

This attribute signals the module that there is a “sensitive

argument” for this PI command. This means that

the translation depends on both the header and the

argument. This should be paired with a sensitiveArgument,

addedArgument, or reuseArgument keyword attribute.

specialSuffix

This attribute signals to the module that the translation for

this PI command will change based on the suffix. If set to 1,

the Translator will note the suffix and use it to help define the

translation. If omitted, it is assumed that specialSuffix equals

zero and the keyword will be stripped of any suffix information

while processing the header.

Translation Attributes
header

This is the only required part of the entry. This defines what

header the legacy command will be replaced with. The new

header should lead with a colon, and have ‘?’ in any space

where a suffix is used.

addedArgument

This attribute, usually used in conjunction with reuseSuffix

and sendInQuery, or with sensitiveArgument, informs the

module that the translation header already has an argument

attached and no further argument handling is required for this

header. If omitted, it is assumed that addedArgument equals

zero and argument handling will proceed as normal.

http://tek.com

6 | TEK.COM

TECHNICAL BRIEFIntroduction to the Programming Interface Command Translator on Oscilloscopes

sendInQuery

This attribute indicates if a translation header should be

included in the query form of the message. This is used when

multiple translation headers are needed to emulate a legacy

header. Usually, the application does not expect multiple

responses to one query, so this should be disabled for all

but one header in a multi-header translation. If omitted, it is

assumed that sendInQuery equals one, and the header will be

sent in the PI query.

sensitiveArgument

This attribute defines what argument must be present for

this translation to be valid. For example, “trigger:a:type” is a

command that works in both legacy and supported Tektronix

oscilloscopes1, but the glitch trigger no longer exists. Instead,

the pulse width trigger is used. Therefore, a ‘translation’

node exists for “trigger:?:type” with a sensitive argument

of “GLItch”. Note, the same UPPERlower form is used, as

arguments can have a short form.

If there should be a default header to use if all sensitive

arguments failed (that is different than the initial header,

such as “trigger:a:pulse:class”) this should be listed as the

last translation option for a keyword and should exclude

this attribute. If omitted, it is assumed there is no sensitive

argument, and if paired with other sensitiveArgument

translation nodes under the same keyword, it is assumed to

be the default header.

reuseArgument

This attribute is used when two or more headers are required

to emulate the legacy header and all new headers require the

same argument. This flag will inform the module to preserve

the argument when sending consecutive translation headers.

This attribute should be disabled on the last header in a multi-

header translation to make sure the argument is correctly

cleared. The countOfArguments attribute is REQUIRED

when using this attribute. If omitted, it is assumed that

reuseArgument equals zero, and the argument information will

be cleared after executing the translation header.

countOfArguments

This attribute indicates the number of previous arguments that

are applied when reuseArgument is used. When enabled, it

will add the reused argument to the current translation header.

If omitted, it is assumed that no arguments are reused.

Note: attributes for handling suffixes (such as the “a” in

trigger:a:mode) can be found in the Reference Manual.

Translation Examples
Note: there are additional examples available in the PI

Translator Manual.

One-To-One Translation

This is the standard format from which all compatibility

changes are built. It is used when a single message in

supported Tektronix oscilloscopes1 can be used in place of

a legacy message. In this example, the command to define

a math waveform is to be translated from a legacy DPO7000

command that has the syntax:

 MATH<x>:DEFine <QString>

 MATH<x>:DEFine?

To a PI message in supported Tektronix oscilloscopes1

that explicitly specifies the math command group and has

the syntax:

 MATH:MATH<x>:DEFine <QString>

 MATH:MATH<x>:DEFine?

http://tek.com

TEK.COM | 7

TECHNICAL BRIEFIntroduction to the Programming Interface Command Translator on Oscilloscopes

The format for the QString argument is identical in both command sets. The PI translator entry to convert from the legacy

command to the equivalent command in supported Tektronix oscilloscopes1 is:

<keyword name='MATH?'>

 <keyword name='DEFine' leaf="1" query="1" command="1">

 <translation header=':math:math?:define'/>

 </keyword>

</keyword>

In this example, MATH<x>:DEFine will be replaced with math:math<x>:define. Note that the suffix is replaced with a ‘?’. This

entry will work for both commands and queries because both attributes are enabled.

One-To-Many Translation

This format is used when two or more PI messages are needed to emulate a legacy command. In this example, the command to

set the number of math averages is to be translated from a legacy DPO7000 command which has the syntax:

MATH<x>:NUMAVg <NR1>
MATH<x>:NUMAVg?

to two messages in supported Tektronix oscilloscopes1 that set the number of averages and ensures that math averaging is

enabled. On the legacy scope, setting the number of averages implicitly activates math averaging, but this operation must be

explicitly enabled on modern platforms. These messages have the syntax:

MATH:MATH<x>:AVG:WEIGht <NR1>
MATH:MATH<x>:AVG:WEIGht?
MATH:MATH<x>:AVG:MODE 1

The PI translator entry to convert from the legacy command to the equivalent command in supported Tektronix oscilloscopes1 is:

<keyword name='MATH?'>

 <keyword name='NUMAVg' leaf="1" query="1" command="1">

 <translation header=':math:math?:avg:weight' reuseSuffix="1"/>

 <translation header=':math:math?:avg:mode 1' addedArgument="1" sendInQuery="0"/>

 </keyword>

</keyword>

In this example, the ‘leaf’ keyword has two translation headers. The attributes in the first header indicate that the suffixes in

the message should be preserved for the following message. The attributes in the second indicate that no argument should be

expected (note that the translation header includes an argument) and that it should not be sent if used in a query.

Argument-Dependent Headers

In some cases, the appropriate header in a supported Tektronix oscilloscope1 cannot be determined from the legacy command

alone, but also requires information from the argument. This tool supports both long and short argument forms (subtract vs

sub for example, provided the UPPERlower format is used in the argument) as well as two or more valid arguments. Note: If no

‘default’ header is provided, the system will make no change if the legacy message is a query.

In this example, the command to set the probe input mode (usually used for TriMode Probes) is to be translated from a legacy

DPO7000 command which has the syntax:

CH<x>:PRObe:INPUTMode {DEFault|DIFFerential|COMmonmode|A|B}
CH<x>:PRObe:INPUTMode?

http://tek.com

8 | TEK.COM

TECHNICAL BRIEFIntroduction to the Programming Interface Command Translator on Oscilloscopes

To a supported Tektronix oscilloscope1 command that has the same header syntax but accepts different arguments and has a

syntax of:

CH<x>:PRObe:INPUTMode {A|B|C|D}
CH<x>:PRObe:INPUTMode?

The PI translator entry to convert from the legacy command to the equivalent supported Tektronix oscilloscope1 commands is:

<keyword name='CH?'>

 <keyword name='PRObe'>

 <keyword name='INPUTMode' leaf="1" command="1" query="1" argument="1">

 <translation header= ":CH?:PRObe:INPUTMode D" addedArgument='1' reuseSuffix='1' SensitiveArgument=
'DIFFerential'/>

 <translation header= ":CH?:PRObe:INPUTMode C" sendInQuery='0' addedArgument='1'
SensitiveArgument='COMmon'/>

 </keyword>

 </keyword>

</keyword>

In this example, both the legacy command and the translated command have four valid arguments. However, two of the

arguments do not match exactly. One solution is to “translate the argument” using the sensitiveArgument attribute. If

DIFFerential is received, the module will use D as an argument. If COMmon is received, it will use C. Note, if none of the four

listed arguments are used, the system will make no change, as there is not a “default” header available. If there is a default

behavior wanted, simply add an additional translation node after the last argument dependent header and the system will use the

final option.

Reuse Argument

This is used when a global setting in legacy scopes needs to be emulated on a supported Tektronix oscilloscope1. This allows a

one-to-many compatibility change to set an argument across several parameters. Note: At this time, the module does not have

the ability to query how many instances of a parameter exist, so it may be necessary to observe this value before implementing.

In this example, the command to set the global trigger level is to be translated from a legacy DPO7000 command which has

the syntax:

TRIGger:{A|B}:LEVel <NR3>
TRIGger:{A|B}:LEVel?

To a sequence of commands that set the trigger level for each channel and has the syntax:

TRIGger:{A|B}:LEVel:CH<x> <NR3>
TRIGger:{A|B}:LEVel:CH<x>?

The PI translator entry to convert from the legacy command to the equivalent supported Tektronix oscilloscope1 command is:

<keyword name="TRIGger">

 <keyword name="?">

 <keyword name="LEVel" leaf="1" command="1" query="0">

 <translation header=":trigger:?:level:ch1" reuseSuffix="1" reuseArgument="1" countOfArguments="1"/>

 <translation header=":trigger:?:level:ch2" reuseSuffix="1" reuseArgument="1" countOfArguments="1"/>

 <translation header=":trigger:?:level:ch3" reuseSuffix="1" reuseArgument="1" countOfArguments="1"/>

 <translation header=":trigger:?:level:ch4"/>

 </keyword>

 </keyword>

</keyword>

http://tek.com

TEK.COM | 9

TECHNICAL BRIEFIntroduction to the Programming Interface Command Translator on Oscilloscopes

The reuseSuffix and reuseArgument attributes tell the

Translator to preserve both the suffix and the argument to be

used by the next translation. In this example, both are used

for channels 1 through 3, but for channel 4, the information

no longer needs to be preserved. The countOfArguments

attribute is used in case multiple arguments need to be

preserved. In this example, there is only one argument

per command.

Summary
The PI Translator already contains support for a variety of

legacy commands. However, most applications will need

some customization to reach full command coverage. The

documentation and examples provided in this technical brief

provide all the information needed for most situations. If you

have a particularly advanced or difficult automation scheme,

please refer to the PI Translator manual.

1.	 Supported Tektronix oscilloscopes:
2 Series MSO
4 Series MSO
5 Series MSO
5 Series B MSO
6 Series MSO
6 Series B MSO
MSO58LP
LPD64

http://tek.com

Contact Information:
 Australia 1 800 709 465

Austria* 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777
Belgium* 00800 2255 4835

Brazil +55 (11) 3530-8901
Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777
Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401
Finland +41 52 675 3777

France* 00800 2255 4835
Germany* 00800 2255 4835

Hong Kong 400 820 5835
India 000 800 650 1835

Indonesia 007 803 601 5249
Italy 00800 2255 4835
Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777
Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 88 69 35 25
Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835
New Zealand 0800 800 238

Norway 800 16098
People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077
Poland +41 52 675 3777

Portugal 80 08 12370
Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564
Singapore 800 6011 473

South Africa +41 52 675 3777
Spain* 00800 2255 4835

Sweden* 00800 2255 4835
Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688
Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835
USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not
accessible, call: +41 52 675 3777

Rev. 02.2022

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade
names referenced are the service marks, trademarks or registered trademarks of their respective companies.
0810823 SBG SBG 48W-73775-1

http://www.tek.com
http://www.tek.com

