spectracom

Geo-PNT

Master Clock + GPS Aided INS Combined in a Single Box

- GPS-aided inertial navigation and timing
- High performance internal timebase and IMU in case of loss of GPS
- Software configurable timing interfaces
- NTP network synchronization protocol
- Precise 1 PPS, 10 MHz and other timing signals
- Easy integration thanks to small footprint and low power consumption
- Ruggedized form factor (MIL-STD-810G)

Applications

- Airborne
 - Observation payload (radars, optronics, electronic warfare)
 - Flying test bench
 - Flight analysis
 - Tactical UAV navigation
- Ground
 - Satcom on the move
 - Anti IED jamming systems
 - Mobile radios and C31
 - Robotics
- Marine/Naval
 - Sensor support (radars, sonars, optronics, electronic warfare)
 - Communication networks
 - Offshore/DSO platforms
 - Buoys

Accurate Timing, Position and Attitude in a Single Box

Geo-PNT is an innovative and efficient solution for applications that need precise navigation data, as well as accurate time reference. It combines a high performance, versatile, GPS master clock with an accurate inertial navigation system that delivers time, position and attitude under all circumstances, including temporary loss of GPS, typical of dynamic platforms. It minimizes size, weight and power (SWaP) due to the integration of positioning and timing that are typically achieved by two independent subsystems.

High Performance Time Server

Geo-PNT maintains an accurate internal timescale with very low power consumption via a low-phase noise OCXO (contact the factory about CSAC). Precise time and frequency signals are available as 1 PPS, unmodulated IRIG B timecode, 10 MHz, and NMEA time-of-day messages. An NTP server provides accurate time distribution over an IP network.

High Performance GPS Aided INS

Geo-PNT provides extremely accurate positioning and orientation measurements, even in GPS denied environments. Measurement data is logged internally and streamed at a high output rate through a serial or LAN interface. Geo-PNT is available with several GPS receiver and IMU configurations.

Geo-PNT Configurations

Non ITAR Configurations	GPS Receiver	IMU
Tactical	L1 Standalone	Internal Quartz MEMS M-G352 or M-G362
Tactical-RTK	L1/L2, RTK enabled	Internal Quartz MEMS M-G352 or M-G362
Advanced	L1/L2, RTK enabled	External FOG KVH1750 (other IMU on demand)
ITAR Configurations	GPS Receiver	IMU
Tactical-RTK SAASM	L1/L2 SAASM, RTK enabled	Internal Quartz MEMS M-G352 or M-G362
Advanced SAASM	L1/L2 SAASM, RTK enabled	External FOG KVH1750 (other IMU on demand)

Timing

Output Signals

- DCLS: x3 configurable digital outputs (1PPS, IRIG BOO2), 3.3V, 50Ω
- RS232: x1 NMEA ToD message (GPZDA, GPRMC)
- Frequency: 10 MHz, sine, 0 dBm in 50Ω
- Network: NTP server(v3, v4)

Management

- 10/100bT LAN interface
- Web User Interface (status, configuration, log, SW update)

Time and Frequency Performances

Performances	осхо	CSAC
Timebase Performances		
Relative Frequency Variation with Aging:		
- 24 hours - One month	5.10 ⁻¹⁰	- 3.10 ⁻¹⁰
- One year	5.10 ⁻⁸	1.10%
Relative Frequency Variation with Temperature (-40°C +85°c)	± 5.10 ⁻⁸	± 5.10 ⁻⁸
Relative Frequency Variation with Acceleration (any axis)	± 1.10 ^{.9} /g	-
Phase Noise on 10 MHz Output: @ 10 Hz @ 100 Hz @ 1 kHz @ 100 kHz	-110dBc/Hz -120dBc/Hz -140dBc/Hz -150dBc/Hz	- 70dBc/Hz -113dBc/Hz -128dBc/Hz -140dBc/Hz
System Performances		
Frequency Accuracy Averaged Over 24 hour when Locked on GNSS	3.10-12	1.10 ⁻¹²
Phase (1 PPS) Drift in Holdover (no reference available) - 4 hours - 24 hours - 7 days	1.5 μs 30 μs 1 ms	0.2 µs 1.3 µs 30 µs
Phase (1 PPS) accuracy to UTC	±50 ns (1σ)	±50 ns (1σ)

Geo-PNT IMU Performance

Configuration	IMU	Parameter	Accelerometer	Gyroscope
	Tactical, Tactical-RTK, Tactical-RTK SAASM Internal M-G362	Range	±6 g	±450°/sec
Tactical.		Bias stability (in-run)	< 0.1 mg	6°/hr
		Random walk	0.04 (m/sec)/√hr	0.2°/√hr
		Range	±3 g	±150°/sec
		Bias stability (in-run)	< 0.1 mg	3°/hr
		Random walk	0.04 (m/sec)/√hr	0.2°/√hr
Advanced,		Range	±10 g	±490°/sec
Advanced SAASM	External KVH 1750	Bias stability (in-run)	< 0.05 mg	0.05°/hr
		Random walk	0.07 (m/sec)/√hr	<0.012°/√hr

Position Accuracy*

Configuration (GPS receiver)	Standalone Mode Horizontal / Vertical Accuracy	Differential Mode Horizontal / Vertical Accuracy
Tactical (L1 only)	1.5 m / 2.5 m	-
Tactical-RTK (L1/L2) Tactical-RTK SAASM	1.5 m / 2.5 m	0.05 m / 0.1 m
Advanced (L1/L2) Advanced SAASM	1.0 m / 2.0 m	0.05 m / 0.1 m

Dynamic Attitude Accuracy*

Configuration (IMU)	Standalone Mode Roll-pitch / Heading Accuracy	Differential Mode Roll-pitch / Heading Accuracy
Tactical (internal IMU)	±0.2° / ±0.5°	_
Tactical-RTK, Tactical-RTK SAASM (internal IMU)	±0.2° / ±0.5°	±0.1°/±0.3°
Advanced, Advanced SAASM (KVH1750)	±0.05° / ±0.1°	±0.01°/±0.05°

NOTE: Accuracy must be measured once dynamic alignment is completed.

Output Rates Through Serial or RS232 Interface

Configuration (IMU)	Navigation Data Output Rate
All Tactical Configurations	125 Hz
All Advanced Configuraions	100 Hz

^{*}Accuracy is dependent upon GPS satellite system performance, ionospheric conditions, GPS blockage and other factors

Technical Specifications

Data Recording/Logging

- Navigation solutions (position, velocity, acceleration, attitude, angular rate, ...)
- Raw GPS and IMU data (for post processing)
- Full diagnostics

External IMU Support

• KVH 1750 is standard in Advanced configurations.

Geo-PNT configurations can be proposed with:

- Honeywell HG1900
- Honeywell HG1700
- Honeywell HG9900
- Litton LN200
- Other IMU's on request

Safety and Diagnostics

- Internal safety and monitoring systems
- Internal BIT with operator notification

Operational Readiness

- Cold Start: 60 s
- 1 PPS/Time-of-Day: 60 s

Monitoring

- Power/status LEDs
- Remote/local status, configuration, event log, software update through web pages

Environmental

- Temperature in Operation: -40°C to +65°C
- Temperature in Storage: -45°C to +85°C
- Humidity: 95% RH, non condensing
- Altitude: 35,000 ft
- Mechanical (MIL-STD-810G):
 - Vibrations: 7.7 g rms, 20 to 1000 Hz
 - Shocks : 20 g, 11 ms

Physical

- Size: 120 x 100 x 55 mm (4.7" x 3.9" x 2.2") Weight: 0.75 kg (1.7 lbs)
- Mounting: On a plate, 4 through holes

Power

- Input Voltage: 10-30 VDC
- Tactical Configurations: 9 W typ
- Advanced Configurations: 13 W typ