

Overview:

PG3L Digital Pattern Generator is a powerful, general purpose tool for both engineering and production. Typically it is used for peripheral/ASIC emulation and stimulation, setup/hold verification, production test, small-scale ATE, and general digital stimulus. When coupled with a Tek LA and/or a Tek 'scope, a complete test system is realized

Primary Features:

- 32 channels, 300 MHz all channels, 32 MVectors, +/- 200pS (typ) data skew
- Fine time delay adjustment for each 8 bit group
- Supports both flat and block-based data models (~4000 blocks)
- Probes have built-in LA feedback connection simplifies connection to user system
- Interactive GUI-to-module interface via USB 2.0 for setup and firmware update
- Inputs probe for clock and events input independent of output probes
- Small, quiet, cool, color-coded probes
- Firmware is user-updatable to support field feature and other upgrades
- External (user clock) supports gated clocks
- Inputs: 8 external events, 1 trigger, external 10 MHz reference, 8 byte lane inhibits.
- Additional outputs: 4 clocks and 4 configurable strobes (one each per output probe)
- All functions, all pins simultaneously (clocks, strobes, inhibits, data)

Part Numbers and Options:

PG3L	PG3L
-P3L300	Opional Inputs probe (P300), cable, and accessories
-P3LOC	Optional 2 nd output probe cable
-P3LDDR	Option for DDR outputs (600 Mbps/ch/16ch)
-P3R3	Option to extend the warranty to 3 years
P311	Analog out, 300 MHz dual 8-bit/single 14-bit DAC probe
P321	Low speed serial probe (I2C, SPI, RS232, RS422)
P370	4.5V-5.5V, 16 channel probe, 150 MHz, square pins
P370LV	1.6V-3.6V, 16 channel probe, 200 MHz, square pins
P370LV2	1.0V-2.5V, 16 channel probe, 200 MHz, square pins
P373	LVDS, 16 channel, 300 MHz (mictor)
P375	Programmable Vol/Voh, bit-variable timing, 16 ch, 300 MH

<u>Contact:</u> Scott Silver scott.silver@movingpixel.com +1.503.626.9663 phone +1.503.626.9653 fax

		enerator - ew <u>W</u> indow	Setup: PG 1003 Help	
	6 📰	II 💦 💡	Status Idle Run	
Syster	n		🔟 Setup: PG 1003	
Progr	erator %			Setus Run Mode © Sigp © Continuous Event Level I for Advance Level I for Jump
Sequen	ice List :			Signal
No	Label	Wait For	Output Jump	Out
1	Line		Block/Sub Seq Repeat If T	Fo High
2				High

PG3L Specifications

Tables 1 through 4 list the characteristics and specifications for the pattern generator. Table 5 lists details about the shipping container.

All specifications are valid after the unit has been operating for 30 minutes in a temperature-stable environment.

Please note that any operation outside of any of these specifications could cause damage that might take many forms: immediate faulty operation, short-term mis-operation, out-of-spec operation, long-term mis-operation, extreme non-repairable damage, or hazard to the user. The fault may not be obvious after the damage occurs. Do not operate this equipment outside the specifications found below.

Characteristic Description **Operational mode** Normal Pattern data output is synchronized by the internal/external clock input Pattern data output is synchronized by software command or Step PGApp directive **Output pattern** Maximum Data Output Rate 300Mbits per second per channel; 600Mbps/channel/halfchanels 300 MHz Maximum Clock Output Frequency Maximum Operating The maximum operating frequency of the module is a function of the output level, output pattern and the load condition, Frequency including the series termination resistor in the probe. Operating conditions exceeding this frequency may result in damage to the probe. 4 to 33554431 (32 MVectors) Pattern length Number of channels 32 channels (requires output probes) Sequences Maximum 3965 Number of blocks Maximum 3965 1 to 1048575 or infinite Repeat count PGApp software Control software requirements and limits Operating system Microsoft Vista or XP Options -P3LOC Additional Output Probe cable. Base PG3L comes with one. Required if user requires 2 output probes simultaneously. -P3L300 Inputs probe, cable, and accessories. Required if user requires external events or the ability to take in an external vector clock.

Table 1: PG module operational modes and limits

Table 2: PG Clocking and Reference Input/Output specifications

Characteristic	Description				
Internal Clock					
Clock Period	10mS to 3.33nS				
Clock Frequency	100 Hz to 300 MHz				
Period resolution					
Frequency accuracy (internal timebase)	+/- 300ppm				
Ontional Enternal Clash Innut	wie Inneste Droke (D200), heth differentiel and				
Optional External Clock Input	via Inputs Probe (P300), both differential and				
(option –P3L300)	single-ended, jumper-selectable on Inputs Probe DC to 300 MHz				
Clock Frequency					
Threshold	-2.0V to +2.5V (single-ended input only)				
	differential clock input is non-adjustable				
Resolution	32 bits				
Minimum pulse high, low	1.4 nS				
Input Impedance	Jumper-selectable, on or off, resistor changeable by user, shipped as 100 ohm differential, 50 ohm single				
	ended				
Sensitivity	500mV p-p				
Round-trip time, approximate	~80nS				
Round-urp time, approximate	Clock at input probe to clock appearing at output				
	probe output.				
Clock delay adjustment range	7.25 nS in 20pS steps ¹				
Clock delay adjustment range					
-					
Outputs					
Inherent skew, any data output to any data output	+/- 150pS max				
	includes probe cable, skew measured at probe input.				
	Does not include probe skew, which is probe-type				
	dependent.				
Byte-skew adjustment range	7.25 nS in 20pS steps ²				

¹ An inversion control is also available that effectively doubles the range. This gives the user at least one clock cycle of delay adjustment at the lowest clock frequency. ² An inversion control is also available that effectively doubles the range. This gives the user at least one clock cycle of delay

adjustment at the lowest clock frequency.

Table 3: PG Event Processing

Characteristic	Description		
Event Action	Advance or Branch		
Number of Event Inputs	8 External from Optional Inputs Probe (P300)		
Number of Event definitions	8: up to 256 event input patterns can be OR'd to		
	define an event		
Event Filtering	0 ns, 25 ns, or 50 ns		
Event threshold	-5V to +5V		
Sensitivity, minimum	500mV p-p		
Signal amplitude, limits	-5VDC to +5VDC		
Variable Event Setup Latency (FREQLAT)	300 MHz = 2 user clocks		
(used below in Waitfor/Branch setup calculation)	250 MHz = 6 user clocks		
	200 MHz = 8 user clocks		
	150 MHz = 12 user clocks		
	100 MHz = 14 user clocks		
	50 MHz = 18 user clocks		
	$\leq 10 \text{ MHz} = 22 \text{ user clocks}$		
WaitFor Setup Time	$130 \text{ ns} + \langle \text{filter dly} \rangle + 10 \text{ user clocks} + \text{FREQLAT}$		
Branch Setup Time	130 ns + <filter dly=""> + 21 user clocks + FREQLAT</filter>		

Table 4: PG Electrical and Mechanical

Characteristic	Description		
PG3L			
Weight, approximate	3kg		
Overall Dimensions, approximate	Depth: 400mm, Width: 305mm, Height: 97mm		
Power, maximum (without probes)	30 watts		
Voltage	100 – 240 VAC, 50-60 Hz		
Power Factor Correction	Active, meets EN61000-3-2		
Fuse			
110V nominal operation	1 amp fast blow, 3AG 250 V or equivalent,		
	1.25 inch x 0.25 inch		
220V nominal operation	2 x 1 amp fast blow, 250V		
_	5 mm x 20 mm		

Table 5: PG Shipping Container Materials

Material	Amount
Cardboard (paper)	~1320 grams
Polyethylene (expanded foam)	~165 grams
Urethane foam pads	~115 grams
Shipping container dimensions	485mm x 420mm x 305mm

Abbreviated Probe Specifications

Please see the individual datasheet for more complete specifications

P370 Series TTL/CMOS Probes

The P370 probe features 16 low voltage data outputs running at up to 200 MHz. There are three different versions of this probe: P370, P370LV, and P370LV2. The differences are in the output drivers used for a given voltage range.

Probe	Range	Driver	<u>.</u>
P370	adjustable between 4.50 and 5.50 volts	74ACT16244DGG ³	
P370LV	adjustable between 1.65 and 3.60 volts	74AVC16244DGG ⁴	
P370LV2	adjustable between 0.80 and 2.50 volts	74AUC16244DGG ⁵	

The two inhibit inputs are CMOS levels with a 1.4 volt threshold regardless of what the driver output voltage is set to. There is an independent inhibit for each data byte. The probe data byte outputs are enabled when these are no-connect or pulled low. The probe does not drive the data byte outputs when the inhibit pin is driven high.

The voltage ranges given above are to keep the output drivers operating within specification. There is a limit in the hardware so that the maximum voltage cannot be exceeded. But the minimum voltage can be set outside the ranges described above. The PGApp software will allow a user to set the voltage lower than the minimum listed above but will issue a warning that operation is outside of the probe specification. **The** *Moving Pixel* **Company** (TMPC) does not specify operation outside the ranges listed above.

Electrical specification for the P370 probe:

Description	P370	P370LV	P370LV2	Notes
Output voltage adjustment	5.5 volts	3.6 volts	2.5 volts	
high, max				
Output voltage adjustment	4.5 volts	1.65 volts	0.8 volts	
high, min				
Max Frequency	150 MHz	200 MHz	200 MHz	6
Enable time	18.8 nS max	12.0 nS max	10.4 nS max	⁷ At max voltage
Disable time	19.8 nS max	12.0 nS max	10.5nS max	5 At max voltage
Rise/fall time, no load				Uncontrolled ⁸
Skew between data	uncontrolled9		1.5nS max	At max voltage
outputs				
Output current, max				10

Note: all voltages referenced to ground

All the outputs of each probe run through a 100 ohm series termination before the output connector. This helps protect the probe from shorts, reflections, and other user-system connection issues.

The user can replace this termination (via desoldering) if there is a more suitable value for your system. If the user changes the resistor, the warranty on the output buffers is voided. The rest of the probe will still be covered under warranty.

The series resistor limits the output current. At any given output current, a new output voltage low and output voltage high can be computed. For example, if the no-load voltage is 3.3 volts and the output current load is 10 mA, the output high voltage at the output of the probe will be no greater than 2.3 volts; the output low voltage will be no less than 1.0 volts.

³ Datasheet is available: http://www.ti.com/lit/gpn/sn74avc16244

⁴ Datasheet is available: http://www.ti.com/lit/gpn/74act16244

⁵ Datasheet is available: http://www.ti.com/lit/gpn/sn74auc16244

⁶ Operation beyond this specification is possible with unspecified degradation of the output high and output low voltage levels

⁷ typical is believed to be about 5 nS less, characterization data is tbd

⁸ Characterization data tbd

⁹ Characterization data tbd

¹⁰ Series termination lowers output high voltage and raises output low voltage –see discussion above.

The Clock output and Strobe output have 1k ohm pulldown resistors to ground.

The Inhibit inputs have 10k ohm pulldown resistors to ground as well as a negative- voltage protect diode to ground (through a 100 ohm resistor). On the P370LV and P370LV2, there is an additional overvoltage protection diode (via 100 ohms) to 3.3 volts.

On the bottom of the unit, a square pin field is accessable that connect in parallel with the output connector. This enables the user to simultaneously connect the probe to the SUT and to a logic analyzer. The square pin field makes connection to a logic analyzer easy. This square pin field may also useful during pattern development by making a connection to a logic analyzer easier than using the leadset and connecting individual leads to the logic analyzer.

P373 LVDS Probe

The P373 probe features LVDS outputs running at up to 300 MHz. To preserve the signal integrity associated with the very fast edge rates (210pS) of the output drivers, we have chosen to make the connection from the probe to the user system via a AMP Mictor connector and a high-speed, multi-coax ribbon cable.

The two inhibit inputs are TTL levels. There is an independent inhibit for each data byte. The probe data byte outputs are enabled when these are no-connect or pulled low. The probe does not drive the data byte outputs when the inhibit pin is driven high.

The probe expects the user system to be differentially terminated in a purely resistive 100 ohms. All specifications assume this resistive termination.

Characteristic	Specification		Notes	
Output Risetime	210pS, typ			
Output Enable time	300nS max		Yes, three hundred nS!	
Output Disable time	12nS max			
Skew, nybble	*		4 conse D0	cutive bits starting with
Skew, worst case, probe-probe	+/- 550pS		Any bit in any probe to any other bit in any other probe	
Clock before data	50ps – 400pS typical		Within	one probe, all bits
Output Characteristic	Min	Тур		Max
Vod (differential voltage)	250mV	500mV		600mV
Vcm (common mode)	1.05 V	1.18 V		1.475 V

Electrical specification for the P373 probe

The probe also features a Tektronix P6980 connection from the backside to facilitate connection to a logic analyzer during pattern debug (and perhaps even during system test).

If a user system does not need to run at the highest speeds the probe supports and does not want to connect to the user system via a Mictor, there are adapters available for Mictor to square pins like the Nexus Technology Nex-HD20 (http://www.nexustechnology.com/products/laAccessories/hd20/). Signal integrity will suffer as the risetime on the output of the probe is typically 210 pS. Uncontrolled impedances of longer than 5mm will be noticed in the waveform. Uncontrolled impedances of longer than 3 cm may make the signal unusable, especially the clock signal.

P375 Universal Variable Probe

This probe is called "Universal" because its output high-level ("1") can be adjusted to any voltage between -2.00Vdc and +6.5Vdc. Similarly the output low-level ("0") can be adjusted to any voltage between -2.00Vdc and +6.5Vdc, allowing it to address all modern I/O levels. Further, channels can be paired to form differential channels, again, at any voltage setting. Each output is series terminated in 50 ohms.

This probe is called "Variable" in that any channel can be skewed in time from any other channel in 20pS steps across a range of 2.4nS. This is independent of any delay settings the PG offers.

Electrical specification for the P375 probe

All specifications assume no output load unless otherwise noted.

All specifications are at 25 degrees Celsius ambient temperature, 30 minutes for stabilization of both the PG and the probe. The user can adjust the time skews shown down to zero +/- 20pS.

Speci	fication	Notes
^		
$\sim 1 V/nS$, $\sim 2 V/nS$		
5 nS		typ
5 nS		typ to +/- 10 uA
+/- 300pS		Uncalibrated, 4 consecutive bits starting with D0. Can be user- calibrated to +/- 20pS
+/- 600pS		Uncalibrated, Any bit in any probe to any other bit in any other probe. Can be user-calibrated to +/- 20pS
50ps - 400pS ty	pical	Within one probe, all bits
		Early units were 48.5 ohm
Min	Max	
-2.000 V	+6.500 V	+/- 25mV of set point
-2.000 V	+6.500 V	+/- 25 mv of set point
	10mVp-p	Output voltage –1.8 - +6.5V
	40mVp-p	Output voltage –2.01.8V
710 grams		Approximate, without external power supply
Length: 145mm Height: 75mm	, Width 125mm,	approximate
24 volts, 2 Amps, typical		provided
	 ~1V/nS, ~2V/nS ~0.5V/nS, ~1V/ 5 nS 5 nS +/- 300pS +/- 600pS 50ps - 400pS ty 50 ohms +/- 109 Min -2.000 V -2.000 V 710 grams Length: 145mm 	5 nS 5 nS +/- 300pS +/- 600pS 50ps - 400pS typical 50 ohms +/- 10% Min Max -2.000 V +6.500 V -2.000 V +6.500 V 10mVp-p 40mVp-p 710 grams Length: 145mm, Width 125mm,

Special Purpose Probes

Please see the datasheet for details

P311 – Dual 8-bit DAC, Single 14-bit DAC

P321 - Low-speed serial probe for I2C, SPI, RS232, RS422

P331 – MIPI DPhy 1Gb probe (see MIPI web page for specs)